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Abstract 

The goal of the program was to develop atom + cavity QED systems capable of storing 
and coherently manipulating quantum information coded in long-lived ground states of 
trapped atoms.  We have developed atom traps designed to trap arrays of atoms inside 
high-finesse optical resonators. We have incorporated these atom traps into our high-
finesse optical resonators and distilled the number of atoms in the traps down to the 
single atom level. Our implementation will enable coherent quantum information 
processing between atomic qubits readily scalable to >20 qubits. The theoretical effort of 
this program focused on two goals: (1) exploring alternative strategies for atomic and 
optical-based systems capable of storing and manipulating quantum information, and (2) 
supporting the experimental program by providing detailed study of the laboratory 
systems. 
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3. Creating massive entanglement of Bose condensed atoms, K. Helmerson and 
L. You, Phys. Rev. Lett. 87, 170402 (2001). 

4. All-optical formation of an atomic Bose-Einstein condensate, M.D. Barrett, 
J.A. Sauer, and M.S. Chapman, Phys Rev Lett. 87, 010404 (2001).  

5. Storage ring for neutral atoms, J.A. Sauer, M.D. Barrett, and M.S. Chapman,  
Phys Rev Lett. 87, 270401 (2001). 

6. Motional rotating wave approximation for harmonically trapped particles, O. 
Mustecapliuglu and L. You, Phys. Rev. A 65, 033412 (2002). 

7. On the single mode approximation in spinor-1 atomic condensate,  S. Yi, O. 
Mustecapliuglu, C. P. Sun, and L. You, Phys. Rev. A 66, 011601 (2002). 

8. Spin squeezing and entanglement in spinor-1 condensates, O. Mustecapliuglu, 
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Scientific Progress and Accomplishments 

Findings 

This joint experimental and theoretical project focused on quantum information 
processing (QIP) based on a cavity QED system with trapped neutral atoms.  The 
principal scientific objectives were to integrate the underlying atom trap and cavity QED 
technologies and to distill traps down to the single atom level.  As described below, we 
have successfully guided and transported atoms into our high-finesse optical cavities 
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using a translating one-dimensional optical lattice, and we have observed the signals from 
single atoms as they are transported through the cavity. 

Optical dipole force trap inside of cavity 

Our strategy for creating a controllable neutral atom + cavity system is to employ an 
optical lattice trap loaded external to the cavity.  By translation of the lattice achieved by 
changing the phase of the optical fields, the atoms can be controllably introduced into the 
cavity mode volume (see Fig. 1).  The atom trapping capability and cavity fabrication 
aspects of system were developed during this project and considerable focus was placed 
on combining the two technologies, including incorporating the ability to translate the 
trap with respect to the cavity, ensuring UHV conditions, and minimizing length 
perturbations of the cavity caused by acoustic vibrations and uncontrolled temperature 
changes.  In particular, keeping the high-finesse cavity on resonance requires the 
separation of the mirrors to be held to stabilities on the 10-11 m scale.   

 

 

 

Fig 1:  Two counter-propagating laser beams focused through the cavity in the vertical 
direction produce an optical lattice. Translating the lattice transports atoms collected in 
the magneto-optic trap (MOT) into the cavity mode below. 

 

Our cavity design is a careful compromise allowing for significant vibration isolation and 
also small relative motion of the cavity and the trap laser beam.  With this system, we 
have held the cavity on-resonance without any feedback for up to a minute—this 
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corresponds to residual relative motion of the mirrors of 1 micron/year.  This represents a 
significant improvement over previous microcavity systems, which require a fast 
bandwidth active feedback that can interfere with the atom + cavity system.   

Initial experiments with trapped atoms 

With the experimental system developed during this project, we have conducted a series 
of experiments.  In our first experiment, we load atoms from a magneto-optic trap (MOT) 
into a single beam focus laser.  This is shown schematically in Fig. 2 (left), which shows 
the focused laser beam intersecting the MOT and passing between the cavity mirrors.  
Once the MOT light is extinguished, the atoms are free to fall vertically under the force 
of gravity, while transversely they are guided into the cavity mode by the optical trap.  

To observe the atoms passing through the cavity, we probe the cavity transmission with a 
weak laser field tuned to the atom and cavity resonance.  In the strong coupling regime of 
our atom + cavity system, just a single atom interacts strongly enough with the cavity 
field to create a measurable change in the transmission of a weak cavity probe.  Hence, 

we readily observe the passage of the guided atoms through the cavity mode as an abrupt 
drop in the cavity transmission (Fig. 2, right). 
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Fig 2.  (Left) Atoms are transferred from the MOT to the focused laser trap.  The atoms undergo 
freefall through the cavity, which is monitored by measuring the transmission of a weak probe beam.  
(Right) A typical trace showing the abrupt drop in transmission as the cloud of atoms passes through 
the cavity.  The sharp drop in transmission is to the intrinsic optical bistability of the system. 

Indeed, the intrinsic non-linearity of the atom + cavity interaction is evident from the 
very sharp drop in transmission.  The cavity transmission is shown in Fig. 3 as the atom 
cloud falls through the cavity for several different input powers. Although the atomic 
density time-profile through the cavity is approximately gaussian with a width (~ 1.5 ms 
FWHM) determined by the cloud temperature, the cavity transmission switches very 
abruptly and at different times for different powers.  For the weakest probe powers, the 
individual atom transits are observed as spikes in the transmission at the leading and 
trailing edges of the cloud.  The abrupt change in the cavity transmission is due to the 
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absorptive optical bistability of the system resulting from the collective interaction of 
many radiating atoms with the cavity field. 

To measure the bistability directly, we allow the atomic cloud to fall into the cavity with 
the probe beam off, then we quickly ramp the  probe up to a high value and then down to 
zero again while the atoms are in the cavity. The results are shown in Fig 3., where the 
hysteresis is clearly evident in the 10-fold difference in the switching power. This data is 
taken from a single experimental run in real time. 

 

 

 

Fig. 3:  The transmission of four different probe beam powers (2, 6.4, 20,30 pW from bottom 
to top) are plotted vs. time as the atomic cloud is guided though the cavity by the FORT 
beam.  The graphs are offset by 0.25 each for clarity. (Bottom) A plot of cavity output power 
vs input power. The data was collected in 1 ms while the center of the atomic cloud 
overlapped with the cavity mode. The curve shows a theoretical plot of output vs. input power 
given by the optical bistability equation with a cooperativity C=200. 
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The intracavity atomic density at the instant when the cavity output power drops can be 
determined from the bistability equation.  By increasing the probe power, we can map out 
the atom number vs. time. Fig. 4a shows data collected in this manner.  Maximum 
intracavity atom numbers of ~100 and an atomic density ~1010 cm-3 inside the cavity 
were achieved.  The maximum switched probe output power is 8 nW, corresponding to 
an intracavity intensity of 700,000 larger than the saturation intensity for the transition. It 
is remarkable that such a large intensity can be extinguished by only 100 atoms. 

 

 

Fig 4:  (Top) Data points from transmission curves of several different powers are fitted to bistability curves to extract 
cooperativity data. From left to right the curves show output power vs. cooperativity for input powers of 240, 758, 
2400, 7580, and 31 200 pW. (Bottom) The atomic cooperativity vs. time is plotted as the atomic cloud falls through the 
cavity. 

Translatable Lattice and Distillation to one atom 

In our final experiment, we confine the atoms in a one-dimensional optical lattice 
generated by two counter-propagating laser beams.  To transport the atoms into the 
cavity, the atoms are smoothly accelerated downward from rest through the cavity mode 
before coming momentarily to rest; then the lattice velocity is reversed to bring the atoms 
back up through the cavity a second time.  The maximum velocity of the atoms 30 cm/s, 
and the maximum acceleration imparted is 1.5g.  Images of the trapped atoms being 
lowered down into the cavity and then raised back up again are shown in Fig. 5. 
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Fig 5:  An image series of the atoms trapped in the optical lattice as they are lowered into the cavity and returned. In the 
first image, the unbound atomic cloud can be seen as it falls away from the trapped atoms in the lattice. Losses out of 
the lattice trap can be seen in the weak atomic signal of the last images. 

The measured transmission through the cavity is shown for the lattice-transported atoms 
in Fig 6.  The transmission drops at 150 ms and 170 ms show the atoms on their way 
down through the cavity and back up again.  The first feature at 55 ms is due to atoms 
that are unbound at lattice sites, but still channeled through the cavity.  The gradual drop 
in the baseline transmission for t > 125 ms is due to the cavity drifting out of resonance 
due to heating of the cavity mirrors caused by absorption of the lattice beams. The middle 
graph in Fig. 6 shows the position and velocity of the lattice sites measured relative to the 
cavity axis. 

Because we are in the strong coupling cavity QED limit, our cavity is sensitive to single 
atoms within the mode.  We can load very few atoms into our MOT by using low light 
levels and short loading times. Fig. 6 (bottom) shows a single atom traversing the cavity 
mode. This atom has been accelerated at ~30 m/s2 and is delivered to the cavity 21 ms 
before gravity delivers the unbound atoms. 
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Fig 6:  Transmission of the cavity probe beam shows a group of atoms transported first down and then back up through 
the cavity. The first dip in the transmission at 55 ms is due to unbound atoms as they fall through the cavity due to 
gravity. The second and third features are the trapped atoms moving down and up through the cavity (240 pW probe 
power). (Middle) Position (solid line) and velocity (dashed line) of the atoms trapped in the optical lattice. (Bottom) 
Delivery of a single atom into the cavity mode, arriving 21 ms before the free-falling atoms released from the MOT (2 
pW probe power). 
 

Improving the Lattice Trap 

The atom trap lifetime in our initial experiments was ~100 ms, and this short lifetime 
limited our ability to controllably manipulate the atoms in the cavity.  In the latter part of 
the grant period, we devoted considerable effort to investigate the reasons for the short 
lifetime.  From these investigations, we determined that the trap lifetime was initially 
limited by the amplified spontaneous emission (ASE) of the near-resonant (782-784 nm) 
diode lasers that we were using for the lattice beams.  This problem was alleviated by 
moving to larger detuning (850 nm) which we did using both amplified diode lasers and 
an Argon-ion pumped Ti:Sapphire laser.  We also determined that our ability to 
manipulate the atoms in the translating lattice beams depended critically on the spatial 
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and temporal quality of the lattice formed by the interfering counter-propagating trap 
beams.   

As a result of this work, we now have a trap lifetime in the lattice of many seconds, and 
the lattice quality is now such that we can execute multiple translations of the atoms.  The 
longer lifetime is shown in Fig. 7.  These data were taken with the amplified diode laser 
system at 850 nm.  The lattice lifetime is still shorter than the lifetime with just a single 
focused traveling wave laser beam possibly due to technical noise on the acousto-optic 
modulators used to generate the standing wave beams.  Although this could be improved 
with higher quality frequency sources, it does not pose a current limitation on our 
experiments.   

 

Fig 7:  Lifetime of the trapped atoms in both a single focus trap and a standing wave lattice trap.  The trap laser in both 
cases is a single frequency amplified diode laser system at 850 nm.  The lifetime of the traveling wave trap is limited 
by collisions with thermal atoms in the residual vacuum.  

The improved ability to manipulate the atoms in the moving lattice trap is shown in Fig. 
8.  This figure shows atoms being repeated transported over 3 mm with little loss.   

 

Fig 8:   An image series shows many oscillations of the atoms in the optical conveyor.  There is a 1 ms delay between 
each image. 
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We have also studied our ability to transport the atoms over longer distances.  This is 
shown in Fig. 9.  We can transport the atoms with little loss up to about 6 mm.  This 
corresponds to a movement of over 104 lattice sites and indicates the high quality of the 
standing wave.  

 

Fig 9:  Probability to transport over a specified distance. Here, we transport the atomic cloud a known distance, return it 
to its original location and image the remaining atoms in the cloud. 
 
Summary and future directions 

In conclusion, we have realized a cavity QED system with optically trapped and 
transported atoms.  This system provides means to controllably introduce atoms in and 
out the cavity mode. In our initial experiments, our ability to manipulate the atoms in the 
lattice is limited by the lifetime of our lattice trap.  During the course of this grant period, 
we have dramatically improved this aspect of our experiment.  We are encouraged by our 
progress in this effort, and anticipate that this system will provide a valuable tool for 
quantum information science in the future. 

Technology Transfer 
 

None 
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